博客
关于我
python 生成器
阅读量:131 次
发布时间:2019-02-27

本文共 748 字,大约阅读时间需要 2 分钟。

生成器是一种特殊的函数,它使用yield语句来产生值。在编程中,生成器非常有用,因为它们能在不影响主程序执行的同时,逐次生成大量数据。

让我们来看一个例子。以下是一个生成斐波那契数列的生成器函数:

def fibonacci(n):    a, b, counter = 0, 1, 0    while True:        if counter > n:            return        yield a        a, b = b, a + b        counter += 1

当我们调用这个函数并传入一个参数时,它会返回一个迭代器。例如:

f = fibonacci(10)

接下来,我们可以使用next()函数来逐步获取生成器的值。每次调用next(),生成器会执行到yield语句,然后暂停并返回当前的值。下一次调用时,它会从暂停的位置继续执行。

if __name__ == '__main__':    while True:        try:            print(next(f), end=" ")        except StopIteration:            break

生成器有两个主要特点:

  • 直接调用生成器函数会返回一个迭代器。这意味着生成器在第一次使用时会执行到第一个yield语句,并将初始值返回。

  • 使用next()函数可以控制生成器的执行。当执行到yield语句时,生成器会将当前的执行状态保存,然后返回yield的值。下次调用next()时,生成器会从保存的状态继续执行。

  • 生成器的这种设计模式在处理大型数据或资源密集型任务时特别有用,因为它可以在需要时逐次生成数据,而不会一次性占用过多内存。

    转载地址:http://ibkb.baihongyu.com/

    你可能感兴趣的文章
    NLP三大特征抽取器:CNN、RNN与Transformer全面解析
    查看>>
    NLP学习笔记:使用 Python 进行NLTK
    查看>>
    NLP度量指标BELU真的完美么?
    查看>>
    NLP的不同研究领域和最新发展的概述
    查看>>
    NLP的神经网络训练的新模式
    查看>>
    NLP采用Bert进行简单文本情感分类
    查看>>
    NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
    查看>>
    NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
    查看>>
    NLP:使用 SciKit Learn 的文本矢量化方法
    查看>>
    nmap 使用方法详细介绍
    查看>>
    Nmap扫描教程之Nmap基础知识
    查看>>
    nmap指纹识别要点以及又快又准之方法
    查看>>
    Nmap渗透测试指南之指纹识别与探测、伺机而动
    查看>>
    Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
    查看>>
    NMAP网络扫描工具的安装与使用
    查看>>
    NMF(非负矩阵分解)
    查看>>
    nmon_x86_64_centos7工具如何使用
    查看>>
    NN&DL4.1 Deep L-layer neural network简介
    查看>>
    NN&DL4.3 Getting your matrix dimensions right
    查看>>
    NN&DL4.7 Parameters vs Hyperparameters
    查看>>